Warwick Tucker will receive funding for a postdoc position for international researchers at his group at the Department of Mathematics, Uppsala University.
An old problem from celestial mechanics, the so-called n-body problem, asked to describe the evolution of trajectories for any number of objects affected by gravitational interactions. The objects could be planets in the solar system, stars in a galaxy, or stars in a cluster.
The general solution, even only for three bodies, is not known. Attempts to solve the problem for three and more bodies gave rise to a new area of mathematics – the modern chaos theory.
A special solution of the n-body problem in which the bodies rotate in a plane around their common center of gravity is called relative equilibrium. The question if there is finitely many such relative equilibria has been intensely studied over the last ten years. The answer that in the case of four bodies the number is finite, and lies between 32 and 8,472, has been achieved recently.
The research group at Uppsala University hopes to find the exact number of relative equilibria in the case of four bodies and to ascertain that the number for five bodies is also finite. By applying modern numerical methods and powerful computers, the project is going to bring computational mathematics and pure mathematics closer together.
Photo Uppsala University